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LETTER TO THE EDITOR 

Fast eigenvalue algorithm for central potentials 

R E Crandall 
Department of Physics, Reed College, Portland, OR 97202, USA 

Received 15 June 1983 

Abstract. An algorithm is described that seeks out Schrodinger eigenvalues EnI for a 
given central potential V ( r ) .  The algorithm has, in principle, arbitrary precision. A 
particular implementation has absolute error IE-E,,,I decreasing as T-3,  where T is 
machine computing time. The method is tested on the central Gaussian potential V ( r )  = 
- A  exp(-Ar’) of recent interest. 

Herein is described an algorithm for efficient integration of the radial Schrodinger 
equation (ti = 2m = 1): 

(1) 

yielding arbitrary-precision eigenvalues E,,. Such an algorithm is useful for assessing 
errors associated with various approximation theories. A good example of a potential 
that has received much theoretical attention along these lines is the central Gaussian 

- $”+[ V(r )  + 1(1 + l)/r2]$ =E$, 

V ( r )  = - A  exp( - , if2),  (2) 

having been used in models of nucleon-nucleon scattering (Buck et a1 1977). Approxi- 
mation schemes for this potential have included Liouville-Green asymptotic methods 
(Stephenson 1977), Rayleigh-Schrodinger perturbation methods and Jacobi basis 
variational methods (Bessis et a1 1982), and hypervirial-Pad6 methods (Lai 1983). 
The latter reference contains a table summarising much of the recent work. 

The standard method of integrating the second-order equation (1) suffers from 
possible machine instabilities and from inherent difficulty of establishing a good 
boundary condition criterion for halting computation when a test E is not a bound 
state value. The present method has the key advantages of (a) being a first-order 
differential method, and (b) having clear boundary criteria. The method is highly 
stable and reliable by virtue of (a), and easy to automate by virtue of (b). The 
computation algorithm described presently has experimental error in the calculated 
E value behaving as 

]E -En,I-CT-3 (3 1 
where T is the machine time used in getting E, and the constant C depends on the 
form of V ( r ) ,  the quantum numbers n, I ,  and of course on the machine used. The 
present method was implemented on a DEC PDP 11/70 with the result that the 
ground state eigenvalue EOO for the Gaussian (2), A = 400, A = 1, computes to eleven 
significant figures in one second of CPU time. This eigenvalue and others are tabulated 
in table 2, in the same format used in the references (Lai 1983). 
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The key idea is to invoke a Prufer transformation (Tricomi 1961, Hasova et a1 

(4) 
where F = (IE1)”2. We assume that the potential satisfies V(c0) = 0 and r2V(r)  + 0 
as r + 0. Then the transformed Schrodinger equation (1) and boundary condition at 
z = 0 are written simply as 

( 5 )  

1979) defining the trajectory function 

Y ( 2  1 = c0t-l [Il,’(z/F)/W(z/F)l, 

dy/dz = 1 - U ( z )  sin2 y, Y (0 )  = 0, 

where the function U is given by 

u ( z ) =  V ( Z / F ) F - ~ + I ( I + ~ ) Z - ~ + ~ - ~ ~ ~ ( E ) .  

This transformation provides rapid algorithms for rigorous bounds on one-dimensional 
ground states (Crandall and Reno 1982). Though the angular momentum term in (6) 
makes it difficult to establish rigorous bounds for the radial problem, transformation 
(4) does yield a fast algorithm for converging on correct values of E. These will be 
special values such that the trajectory y has certain asymptotic properties. The arc 
cotangent in (4) is to be interpreted in such a way that y is continuous, passing through 
the appropriate number of intercepts y = j r ;  j’ = 1, 2, . . . as z increases. There is to 
be one such intercept for each zero of (I, on r E (0, m). Intercepts y = ( j  +;)r correspond 
to critical points (d (I,/dr = 0). The ground state trajectory, for example, will pass 
through the value y =in, but not the value y = r since the ground state wavefunction 
has no positive zeros. A bound state is distinguished by the property that y approaches 
the appropriate asymptote from below, as z + 00. This asymptote is determined by a 
given number ( n  - 1) of positive zeros of y, together with the condition 

(7) 2 lim cosec y ( z )  = 2, 
z +cc 

which states the appropriate boundary condition at z =a. Thus the bound state 
eigenvalue E,! is that E for which the differential equation with boundary condition 
( 5 )  yields a trajectory having upper asymptote 

1 a =sup y(z)  = r ( n  -4). 
z 

Note that a convention common in the literature, that n denotes one plus the number 
of positive zeros of 4, is used here. 

The trajectory y can be thought of as the ‘phase’ of the wavefunction, for example 
if $(r) = sin(Fr) as in the free particle problem then y is just the argument 2, and 
there are no bound states since there are no natural asymptotes of the type (5 ) .  For 
the Coulomb potential V(r) = -2/r, on the other hand, there is a ground state 
trajectory y ( z )  = cot-‘(l/r - l ) ,  with asymptotic phase y(00) =fr,  consistent with (8). 
The general effect of the angular momentum number I is to alter the initial slope of 
the trajectory. In machine implementations it is a convenient fact that: 

dy/dzI,=o= 1/(1+ 1). (9) 

This condition is normally used only at the beginning of a trajectory interaction, 
whence the number I appears only in the function (6) during computation. This is to 
say that all necessary effects of I on the boundarj conditions of the radial problem 
are taken care of by assignment (9). 
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The computation algorithm can be put into a convenient stepwise form: 
(1) Choose n (one plus number of positive zeros) and 1. 
( 2 )  Choose a trial energy pair e l  < ez for which E,, must be an intermediate value; 

(3) Set E =$(el +ez), z = 0, y = 0, and iterate the first-order equation ( 5 )  until 

(4) If y ‘  < 0 then set e l  = E ,  or set e2 =E.  Then go to step (3). 

e.g. e l  = - A ,  e 2  = 0 for the Gaussian (2). 

either y ‘ <  0 or y > a (of equation (8)). 

This algorithm automatically seeks out the correct value of E,, as the limiting value 
of the variable E in the loop comprised of steps (3)-(4). In our implementation, a 
fourth-order Runge-Kutta formula was used (Abramowitz and Stegun 1965) to iterate 
equation ( 5 ) .  It is this particular fourth-order accuracy that gives the exponent - 3  
in the experimental behaviour of accuracy with respect to computing time (3). Cer- 
tainly, higher-order algorithms would improve the temporal convergence even further. 

The above algorithm was first tested on a known case, similar to the Gaussian 
problem. Consider the potential 

(10) 

having ground state energy Eoo = -361 = - 19’. For various values of the increment 
dz for the Runge-Kutta solution in step (3) the convergent value of E was obtained. 
Table 1 shows the effect of decreasing dz, which improves accuracy at the expense 

V ( r )  = - 420 sech2 r,  

Table 1. Ground state convergence for the potential V ( r )  = -420 sech’ r using the 
algorithm of the text with fourth-order Runge-Kutta. The exact eigenvalue is - 192 = 
-361. 

Runge-Kutta dz 

1 
2-‘ 
2-’ 
2-’ 
2-4 
2-5 
2-6 

Output E T (CPU seconds) 

-361.001 6 0.15 
-361.000 007 0.4 
-361.000 000 4 0.9 
-361.000 000 02 2.4 
-361.000 000 001 5.9 
-361.000 000 000 06 13.9 
-361.000 000 000 003 28.9 

of more computing time. The data are closely fitted by the estimate (3). Indeed, it 
is evident that halving the increment dz essentially doubles the total convergence 
time T while improving absolute error by more than one decade of magnitude. A 
second check on accuracy behaviour was performed on the ground state of the Gaussian 
( 2 )  with A = 400, A = 1 as customary choices (Lai 1983). The algorithm was repeated 
with successively smaller increments dz until the 16th figure did not change. The 
result is: 

(11) 
a result that consumed 60 seconds of CPU time for dz = 0.002 in the automated 
algorithm. A final check was performed on the ground state problem for the one- 
dimensional potential V ( x )  = x4,  with slightly different equations ( 5 ) ,  (6) for the 
even-parity condition (Crandall and Reno 1982). The result agrees completely with 

Eoo= -341.895 214 561 2383, 
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‘Penk’s number’: 

Et4) = 1.060 362 090 484 1820, 

again consuming about 60 seconds of CPU time with dz = 0.002. 
Table 2 shows values for the Gaussian potential (2) obtained systematically with 

the algorithm. Parentheses indicate those digits not in agreement with Lai (1983). 

Table 2. Results of fast algorithm for eigenvalues -E,, of the potential V =  
-400 exp( - r 2 ) .  Agreement with previous work (Lai 1983) is to four digits except where 
indicated by ( ). 

1 
n O  1 2 3 4 5 

1 341.895 214 561 2383 304.462 838 52 268.110735 27 232.875 300 61 198.798 2702 165.928 199 
2 269.644 459 39 235.450042 38 202.431 257 3 170.639 314 140.135 139 110.992 946 
3 203.983 528 80 173.244 32048 143.809 144 2 115.754 199 89.174956 64.195 877 
4 145.377 898 02 118.383 981 2 92.878 069 7 68.983 554 46.868 114 26.777 853 
5 94.457 747 55 71.623 5 5 1  4 50.567 690 31.521 076 14.851 4875 1.29(699) 
6 52.1435864 34.129 934 9 18.44044 5.67(3144) - - 
7 19.966318 8.083 33 0.(2049) 
8 1.34(73) 

There is no implication that Lai’s numbers are in error-these digits should be 
considered unresolved at present. The algorithm has apparent difficulties with energies 
lying near the continuum, and to a lesser extent for higher I values. The entries of 
table 2 are terminated at that digit not changing when initial increment dz is halved. 
The accuracy of an entry can be taken to be 2 2  in the final digit, on the basis of 
canonical experiments with known potentials (such as (10)). However, the paren- 
thesised entries, that are out of agreement with previous results, are naturally suspect. 
One possible explanation of discrepancy is that the sin2 calculation in differential 
equation ( 5 )  is not perfect on the machine used, although this has not been determined. 

It should be remarked that a global eigenvalue-seeking algorithm can be written 
out. Whereas the algorithm described herein allows a program that asks for input 
values of rz, 1 ,  it is simple to extend the approach so that only the potential need be 
specified while the new program seeks out all Enr bound energies. The most direct 
way to do this is to note that the number of bound states for a given l is just the 
number of zero crossings of the zero-energy solution of the Schrodinger equation for 
that 1. In this way, potentials such as the Gaussian with finitely many bound states 
can be globally analysed. 

A further improvement on the general approach would be to extend the rigorous 
upper-lower bounding theorems of Crandall and Reno (1982) for the present three- 
dimensional cases. Using such new results, one could then resolve issues such as the 
digits of table 2 in the eigenvalues near the continuum. 
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